Semiclassical resolvent estimates at trapped sets
نویسندگان
چکیده
منابع مشابه
Resolvent Estimates for Normally Hyperbolic Trapped Sets
We give pole free strips and estimates for resolvents of semiclassical operators which, on the level of the classical flow, have normally hyperbolic smooth trapped sets of codimension two in phase space. Such trapped sets are structurally stable – see §1.2 – and our motivation comes partly from considering the wave equation for slowly rotating Kerr black holes, whose trapped photon spheres have...
متن کاملSemiclassical Resolvent Estimates for Trapping Perturbations
We study the semiclassical estimates of the resolvent R(+ ii); 2 J R + ; 2]0;1] of a self-adjoint operator L(h) in the space of bounded operators L(H 0;s ; H 0;?s); s > 1=2. In the general case of long-range trapping "black-box" perturbations we prove that the estimate of the cut-oo resolvent k(x)R(+i0)(x)k H!H C exp(Ch ?p); (x) 2 C 1 0 (R n); p 1 implies the estimate kR(+ ii)k s;?s C 1 exp(C 1...
متن کاملAnalytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces
In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.
متن کاملSemiclassical resolvent estimates for Schrödinger operators with Coulomb singularities
Consider the Schrödinger operator with semiclassical parameter h, in the limit where h goes to zero. When the involved long-range potential is smooth, it is well known that the boundary values of the operator’s resolvent at a positive energy λ are bounded by O(h−1) if and only if the associated Hamilton flow is non-trapping at energy λ. In the present paper, we extend this result to the case wh...
متن کاملResolvent Estimates with Mild Trapping
We discuss recent progress in understanding the effects of certain trapping geometries on cut-off resolvent estimates, and thus on the qualititative behavior of linear evolution equations. We focus on trapping that is unstable, so that strong resolvent estimates hold on the real axis, and large resonance-free regions can be shown to exist beyond it.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2012
ISSN: 0373-0956,1777-5310
DOI: 10.5802/aif.2752